Universal non-diffusive slow dynamics in aging soft matter.
نویسندگان
چکیده
We use conventional and multispeckle dynamic light scattering to investigate the dynamics of a wide variety of jammed soft materials, including colloidal gels, concentrated emulsions, and concentrated surfactant phases. For all systems, the dynamic structure factor f(q,t) exhibits a two-step decay. The initial decay is due to the thermally activated diffusive motion of the scatterers, as indicated by the q(-2) dependence of the characteristic relaxation time, where q is the scattering vector. However, due to the constrained motion of the scatterers in jammed systems. the dynamics are arrested and the initial decay terminates in a plateau. Surprisingly, we find that a final, ultraslow decay leads to the complete relaxation of f(q,t), indicative of rearrangements on length scales as large as several microns or tens of microns. Remarkably, for all systems the same very peculiar form is found for the final relaxation of the dynamic structure factor: f(q,t) approximately exp[-(t/tau s)p], with p approximately equal to 1.5 and tau s approximately q(-1), thus suggesting the generality of this behavior. Additionally, for all samples the final relaxation slows down with age. although the aging behavior is found to be sample dependent. We propose that the unusual ultraslow dynamics are due to the relaxation of internal stresses, built into the sample at the jamming transition, and present simple scaling arguments that support this hypothesis.
منابع مشابه
Slow dynamics, aging, and glassy rheology in soft and living matter
We explore the origins of slow dynamics, aging and glassy rheology in soft and living matter. Non-diffusive slow dynamics and aging in materials characterised by crowding of the constituents can be explained in terms of structural rearrangement or remodelling events that occur within the jammed state. In this context, we introduce the jamming phase diagram proposed by Liu and Nagel to understan...
متن کاملStructural and microscopic relaxations in a colloidal glass.
The aging dynamics of a colloidal glass has been studied by multiangle dynamic light scattering, neutron spin echo, X-ray photon correlation spectroscopy and molecular dynamics simulations. The two relaxation processes, microscopic (fast) and structural (slow), have been investigated in an unprecedentedly wide range of time and length scales covering both ergodic and nonergodic regimes. The mic...
متن کاملEquilibriumlike fluctuations in some boundary-driven open diffusive systems.
There exist some boundary-driven open systems with diffusive dynamics whose particle current fluctuations exhibit universal features that belong to the Edwards-Wilkinson universality class. We achieve this result by establishing a mapping, for the system fluctuations, to an equivalent open yet equilibrium-diffusive system. We discuss the possibility of observing dynamic phase transitions using ...
متن کاملDuality of diffusion dynamics in particle motion in soft-mode turbulence.
Nonthermal Brownian motion is investigated experimentally by injecting a particle into soft-mode turbulence (SMT), in the electroconvection of a nematic liquid crystal. It is clarified that the particle motion can be classified into two phases: fast motion, where particles move with the local convective flow, and slow motion, where they are carried by global slow pattern dynamics. We propose a ...
متن کاملNumber of propagating modes of a diffusive periodic waveguide in the semiclassical limit.
We study the number of propagating Bloch modes N(B) of an infinite periodic billiard chain. The asymptotic semiclassical behavior of this quantity depends on the phase-space dynamics of the unit cell, growing linearly with the wave number k in systems with a non-null measure of ballistic trajectories and going like ∼square root of k in diffusive systems. We have calculated numerically N(B) for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Faraday discussions
دوره 123 شماره
صفحات -
تاریخ انتشار 2003